19AE403 ELECTRIC AND HYBRID VEHICLES

Hours Per Week :

L	Т	Р	С
3	0	0	3

Total Hours :

L	Т	Р	CS	WA/RA	SSH	SA	S	BS
45	-	-	5	5	30	20	5	5

COURSE DESCRIPTION AND OBJECTIVES:

This course is intended for learning the Fundamentals of Electrical Hybrid vehicles. This course will give the brief idea about Hybrid vehicles propulsion methods- Hybrid architecture-Hybrid power plant specifications- Fuel cell technology - and Non electric Hybrid propulsion systems.

Links to other courses :

Automotive Electrical and Electronics.

Automotive Transmission

COURSE OUTCOMES:

Upon completion of the course, the students will be able to achieve the following out comes:

COs	Course Outcomes	POs
1	Illustrate the concept of electric vehicles and its propulsion systems.	10
2	State the concept of hybrid architecture and power plant.	2,6
3	List the energy storage systems.	3,9,10
4	Explain about the fuel cells.	4,12
5	Illustrate the non electric hybrid propulsion systems.	5,10

Source : https:// www.fueleconomy.gov

108

UNIT - I

INTRODUCTION TO ROAD VEHICLES AND PROPULSION SYSTEM : Hybrid Vehicles: Performance characteristics of road vehicles; calculation of road- predicting fuel economy- grid connected hybrids.

Propulsion methods: DC motors series wound- shunt wound- compound wound and separately excited motors AC motors Induction- synchronous- brushless DC motor- switched reluctance motors.

UNIT - II

HYBRID ARCHITECTURE AND POWER PLANT SPECIFICATIONS : Hybrid architecture: Series, Parallel and Series Parallel configuration locomotive drives- switching- load tracking architecture. Pre transmission parallel and combined configurations Mild hybrid- power assist- dual mode- power split- power split with shift- - wheel motors.

Hybrid power plant specifications: Grade and cruise targets- launching and boosting- braking and energy recuperation- drive cycle implications- engine friction reduction, engine downsizing and range and performance- usage requirements.

UNIT - III

DRIVE SYSTEM AND ENERGY STORAGE TECHNOLOGY : Sizing the drive system, Matching electric drive and ICE, sizing the propulsion motor, power electronics. Energy storage technology, Battery basics, lead acid battery, different types of batteries, battery parameters.

UNIT - IV

FUEL CELLS: Fuel cell characteristics- fuel cell types – alkaline fuel cell- proton exchange Membrane; direct methanol fuel cell- phosphoric acid fuel cell- molten carbonate fuel cell- solid oxide fuel cell- production and storage hydrogen systems- reformers- fuel cell EV- super and ultra capacitors-flywheels.

UNIT - V

NON-ELECTRIC HYBRID PROPULSION SYSTEMS : Nonelectric Hybrid Propulsion Systems: Short Term Storage Systems Flywheel Accumulators. Continuously Variable Transmissions, Regeneration and cogeneration of energy, Hydraulic Accumulators Hydraulic Pumps/Motors- Pneumatic Hybrid Engine Systems Operation Modes

TEXT BOOKS:

- 1. "Propulsion systems for Hybrid vechilces", John M. Miller the institute of Engineering and Technology, London, United Kingdom, 2008.
- 2. Hybrid and Alternative Fuel Vehicles (2nd Edition) (Professional Technician) by James D. Halderman and Tony Martin (Feb 7, 2010).
- 3. How Your Car Works: Your Guide to the Components & Systems of Modern Cars, Including Hybrid & Electric Vehicles (Rac Handbook) by ArvidLinde (Oct 15, 2011).

REFERENCES:

- 1. Electric and Hybrid Vehicles by Iqbal Husain (Jul 16, 2011).
- 2. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives by Chris Mi, M. AbulMasrur and David WenzhongGao (Jul 5, 2011).

L-9

L-9

L-9

L-9

L-9